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Talk goals & outline

Talk goals: Describe partitioning schemes, module-coupling

methods, and time integration for the new modularized FAST

framework

Talk outline:

◮ Project goals

◮ Definitions

◮ Loose vs. tight coupling

◮ Fast as a glue code

◮ Example system

◮ Preliminary results

◮ Future work
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Project goals

Within the context of the new FAST modularization [1],

provide FAST Module Developers with guidance on

◮ effective partitioning

◮ partition coupling

◮ time integration

◮ tight vs. loose coupling
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Multi-physics modeling: Taxonomy

◮ Vocabulary/taxonomy surrounding multi-physics modeling

and simulation is varied and sometimes contradictory

◮ Here, we use the following taxonomy (see Refs. [2, 3]):

System

Monolithic
Math Model

Partitioned
Math Model

Tight Coupling

Loose Coupling

Strongly Coupled

Weakly Coupled

Multi−Physics
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Multi-physics modeling:

Monolithic vs. partitioned

Monolithic math model:

◮ Single eqn. set that is inherently “tightly” coupled

◮ Different “systems” share degrees of freedom at spatial

interfaces (e.g., fluid-structure interface)

◮ Requires a single time integrator and matching spatial

and temporal meshes

Partitioned math model:

◮ Each partition can be time integrated separately

◮ Allows great flexibility in modeling

◮ Allows for non-matching spatial and temporal meshes

◮ Coupling partitioned models may introduce accuracy

and/or numerical-stability issues
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Coupling model partitions: Tight vs. loose

Tight coupling:

◮ Partitioned-model equations are assembled into a single

system; single time integrator

◮ Matching temporal meshes; may have non-matching

spatial meshes

◮ Likely requires differential-algebraic-equation (DAE) solver

◮ Allows for linearized analyses (time and/or modal)

Loose coupling:

◮ Partitioned-model equations are time integrated in a

conventional serial staggered procedure [3]

◮ Different time-integrators can be used for different

partitions

◮ Allows for non-matching temporal and spatial meshes
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Loose coupling: Weak vs. strong

Weak vs. strong coupling is associated with data sharing

between partitions during time integration

Weak loose coupling:

◮ Each partition is advanced from t to t+∆t using
other-partition interface data only at t

◮ Also known as explicit coupling

Strong loose coupling:

◮ Each partition is advanced from t to t+∆t using
other-partition interface data at t+∆t and possibly t

◮ Also known as implicit coupling
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Weak (explicit) vs. strong (implicit)

staggered coupling: Schematics

◮ Consider staggered integration of two partitions:

(a) Weak Coupling (b) Strong Coupling

◮ Because partitions are updated sequentially, direct

solution of fully implicit coupling is not feasible
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Strong (implicit) coupling via

predictor-corrector coupling

Solution required for time advancement in implicit coupling

can be solved iteratively through a predictor-corrector

approach
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FAST as a glue code

◮ FAST will function as a glue code for coupling

modules/partitions [1]

◮ The underlying model for each module/partition will be a

state-space representation:

ẋ(t) = X (t,x(t),u(t),z(t))

y(t) = Y (t,x(t),u(t),z(t))

0 = Z (t,x(t),u(t),z(t))

where x is the state, y is the system output, u is the

system input, and z is the constraint

◮ For time-dependent partial-differential eqs., this is a

method of lines approach; spatial derivatives have been

discretized

◮ Numerical time integration depends on choice of tight

versus loose coupling of modules
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Example monolithic system

Two-degree-of-freedom damped linear oscillator, with applied

forces f1(t), f2(t):

x = [q1, q̇1, q2, q̇2]
T
, y =∅, u =∅, z =∅

ẋ =













0 1 0 0

−
kc+k1
m1

−
cc+c1
m1

kc
m1

cc
m1

0 0 0 1
kc
m2

cc
m2

−
kc+k2
m2

−
cc+c2
m2













x+













0
f1
m1

0
f2
m2













NATIONAL RENEWABLE ENERGY LABORATORY 11



Example partitioned system

Example partitioning:

◮ Required introduction of coupling force fc, which functions

as a Lagrange multiplier
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Partitioning

System 1:

x1 = [q1, q̇1]
T
, y1 = [q1, q̇1]

T
, u1 = [fc] , z1 =∅

ẋ1 =

�

0 1

−
k1
m1
−

c1
m1

�

x1 +

�

0
1
m1

�

u1 +

�

0
f1
m1

�

= A1x1 +B1u1 + f1

System 2:

x2 = [q2, q̇2]
T
, y2 = [cc (q̇2 − q̇c) + kc (q2 − qc)]

u2 = [qc, q̇c]
T
, z2 =∅

ẋ2 =

�

0 1

−
kc+k2
m2

−
cc+c2
m2

�

x2+

�

0 1
kc
m2

cc
m2

�

u2 +

�

0
f2
m2

�

= A2x2 +B2u2+ f2
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Partition input-output relationships

Input-output relationships: 0 = u1 − y2, 0 = u2 − y1

Given

y1 = [q1, q̇1]
T
, u1 = [fc] ,

y2 = [cc (q̇2 − q̇c) + kc (q2 − qc)] , u2 = [qc, q̇c]
T

we find the following constraints:

fc = cc (q̇2 − q̇c) + kc (q2 − qc)

q1 = qc

q̇1 = q̇c
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Partitioned system: Tight coupling

◮ Partitions can be assembled directly into a global system:

�

ẋ1
ẋ2

�

=

�

A1 0

0 A2

��

x1
x2

�

+

�

B1 0

0 B2

��

u1

u2

�

+

�

f1
f2

�

0 =

�

u1 − y2
u2 − y1

�

⇒ 0 =







fc − cc (q̇2 − q̇c)− kc (q2 − qc)

q1 − qc
q̇1 − q̇c







◮ Treat qc, q̇c, and fc as algebraic constraint variables;

system can be viewed as a Differential Algebraic

Equation (DAE), with DAE Index 1

◮ System can be time integrated (tightly) with standard,

open-source DAE solvers, e.g. DASSL:

http://www.cs.ucsb.edu/˜cse/software.html
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Time integration: Loose coupling

◮ Each FAST module will have the capability to advance the

State one time step, i.e.,

ẋ = X [t,x(t),L (α,u(t),u(t +∆t))]
UpdateStates
−−−−−−−→ x(t+∆t)

where L is a linear-interpolation operator:

L (α,u(t),u(t +∆t)) = (1− α)u(t) +αu(t +∆t)

◮ Input u is held constant while the state x is advanced

◮ “UpdateStates” embodies numerical time integration, e.g.

Runge-Kutta, Adams-Bashforth-Moulton, Backwards FD

◮ Weak explicit coupling: α = 0

◮ Strong implicit coupling: 0 < α ≤ 1
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Predictor-Corrector Loose coupling (1)

Preliminary calculations: Let j = 0

u
n+1(j)

1 = 2un
1
−un−1

1

Step 1 (Predict):

ẋ1 = X1

�

t,x1(t),L
�

α,un
1
,u

n+1(j)

1

��

RK4
−−→ x

n+1(j)

1

y
n+1(j)

1 = Y1

�

tn+1,x
n+1(j)

1 ,L
�

α,un
1
,u

n+1(j)

1

��

u
n+1(j)

2 = y
n+1(j)

1

Step 2 (Substitute & predict):

ẋ2 = X2

�

t,x2(t),L
�

α,un
2
,u

n+1(j)

2

��

RK4
−−→ x

n+1(j+1)

2

y
n+1(j+1)

2 = Y2

�

tn+1,x
n+1(j+1)

2 ,L
�

α,un
2
,u

n+1(j)

2

��

u
n+1(j+1)

1 = y
n+1(j+1)

2
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Predictor-Corrector Loose coupling (2)

Step 3 (Substitue & correct):

ẋ1 = X1

�

t,x1(t),L
�

α,un
1
,u

n+1(j+1)

1

��

RK4
−−→ x

n+1(j+1)

1

y
n+1(j+1)

1 = Y1

�

tn+1,x
n+1(j+1)

1 ,L
�

α,un
1
,u

n+1(j+1)

1

��

u
n+1(j+1)

2 = y
n+1(j+1)

1

Stop or Repeat: Let (j+ 1)→ j. If j = jmax, let

xn+1
1

= x
n+1(jmax)

1 , xn+1
2

= x
n+1(jmax)

2 ,

un+1
1

= u
n+1(jmax)

1 , un+1
2

= u
n+1(jmax)

2

and proceed to next time step; otherwise, repeat Steps 2 and 3

We denote this approach PC(jmax)
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Preliminary results: Histories

Examine loose coupling where each system is time integrated

with RK4 and ∆t = 0.05
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Exact, PC(1), and monolithic histories are indistinguishable
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Preliminary results: Numerical stability

◮ Vary kc and m2, independently, and examine effect on

critical time increment, ∆tcrit

◮ “Sys. 1” and “Sys. 2” data are for uncoupled time

integration

◮ Loose coupling significantly degrades numerical stability

◮ PC coupling shows similar stability w.r.t. mono. treatment
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Preliminary results: Numerical accuracy

◮ Examine convergence rates for RK4 time integration;

consider RMS error of q1(t) over 0 < t ≤ 30
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◮ Monolithic system shows fourth-order convergence
◮ Loose explicit coupling is only first-order accurate
◮ PC(1)/PC(19) stong loose coupling is only second-order

accurate
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Future work

◮ Examine loose coupling with a multi-step method like
Adams-Bashforth-Moulton

• Pursue coupling scheme that retains maximum accuracy

◮ Extend example-problem set to include

• discrete-time partition
• nonlinearity
• partition-internal contraints

◮ Compare loose and tight coupling in terms of accuracy vs.

computational cost

◮ Work to be presented at the AIAA 51st Aerospace

Sciences Meeting [4]
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